1.中心数据库设计

2.国际石油市场风险度量及其溢出效应检验方法

3.油气发现趋势预测

4.预测方法体系

5.子项目预测结果

石油价格预测时间序列模型应用_关于石油的价格预测

概率论与数理统计是数学的一个有特色且又十分活跃的分支,一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。

由于它近年来突飞猛进的发展与应用的广泛性,目前已发展成为一门独立的一级学科。概率论与数理统计的理论与方法已广泛应用于工业、农业、军事和科学技术中,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理。

概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。

扩展资料

应用

1、产品的抽样验收,新研制的药品能否在临床中应用,均需要用到 设检验;

2、寻求最佳生产方案要进行实验设计和数据处理;

3、电子系统的设计, 火箭卫星的研制与发射都离不开可靠性估计;

4、处理通信问题, 需要研究信息论

5、探讨太阳黑子的变化规律时,时间序列分析方法非常有用;

6、研究化学反应的时变率,要以马尔可夫过程来描述。

百度百科-概率论与数理统计

中心数据库设计

没有具体数据要求,一般来说,数据越多越好。

通过线性回归算法,我们可能会得到很多的线性回归模型,但是不同的模型对于数据的拟合或者是描述能力是不一样的。我们的目的最终是需要找到一个能够最精确地描述数据之间关系的线性回归模型。这是就需要用到代价函数。

代价函数就是用来描述线性回归模型与正式数据之前的差异。如果完全没有差异,则说明此线性回归模型完全描述数据之前的关系。

一条趋势线代表着时间序列数据的长期走势。它告诉我们一组特定数据(如GDP、石油价格和股票价格)是否在一段时期内增长或下降。虽然我们可以用肉眼观察数据点在坐标系的位置大体画出趋势线,更恰当的方法是利用线性回归计算出趋势线的位置和斜率。

国际石油市场风险度量及其溢出效应检验方法

5.2.2.1 数据库

根据该系统的开发需求,按照数据库的功能和作用将其分为风险查询类、风险评价类、系统管理类三大类(萨师煊等,2000)。主要数据见表5.5。

表5.5 海外油气与金属矿产开发风险管理系统的主要数据表

续表

5.2.2.2 数据仓库

油价数据来源于美国能源部(DOE)下属的能源信息署(EIA)网站、中石油(CNPC)网站和《华尔街日报》(WSJ)网站提供的油价数据,油价序列本身就是一个不规则的时间序列,油价数据具有以下几个特点。

(1)数据的一致性差

油价数据格式多样,存在数据冗余,主要体现在:使用的数据格式均不相同,并且各个子系统相对独立。在网站单独作用的情况下,一般都没有问题,但要将这些不同系统或不同时期的数据集中起来综合利用,就可能出现数据不齐全、不一致或重复的现象。

(2)数据存放的分散

油价数据来源多,缺乏统一管理,没有一种相应的网页数据自动化抓取操作实现数据的本地化操作过程。

(3)数据开发不充分

大容量数据导致对数据的开发利用不充分,缺乏对获取的数据如各分析机构制定的期货合约元数据进行各种深层次分析、综合、提炼、挖掘和展现的应用,因此很难对丰富的统计数据进行二次开发利用。

根据油价数据中所包含的油气产品种类、油气产品合约制定日期、油气产品的价格类型、不同市场下油气产品价格的差异等,能够加深对油价走势的了解。油价的这种与时间相关性、不可修改性,以及集成的性质,使得我们用多种角度对原始数据进行理解,并真实反映其特性,也让我们发现使用一种整合的技术对油价进行精确预测十分必要。

数据仓库的构建流程如图5.13所示由下至上逐步实现。

图5.13 数据仓库构建流程

1)数据源。

A.数据源的复杂性。数据分散在数据库管理系统、电子表格、电子邮件系统、电子文档甚至纸上。系统中要求集的3个数据源中,EIA 网站存储在网页上的油价相关更新较慢,虽然提供了各市场日、周、月、年的油价数据下载,但是下载完成之后的表格字段格式时常发生变化,这为实现自动获取数据并下载到本地自动入库的要求增加了难度;中石油网站数据除上述只显示3条数据之外,网站上会将访问流量过大的IP地址列入黑名单使其不能继续下载到本地进行保存,为这些数据建立统一的模型将会耗费很大精力。

B.数据的有效性。由于存在经验局限,如何处理数据的空值、不同时间间隔时间字段格式,入库时应注意的问题等,如果应用程序没有检验数据的有效性,会对数据多维显示产生极大影响,因此也归结为数据源数据质量问题。

C.数据的完整性。数据源上的数据并不那么明显或者容易获得。油价是高度敏感的数据,因此各个网站虽然提供了各个油品交易市场的日、月或年数据,但是完整性并不能充分保证,根据企业政策的不同,有时对要获得的数据,需花费大量精力。为此,要对不同的数据源进行建库,以保证所获数据的完整性。

2)数据处理。

高效的多维数据集展示离不开底层数据源数据的精确获取,或者叫做数据理解和数据清洗。于是系统在基于元数据获取、加工、入库和多维数据集展示上实现预期的要求。

A.ETL。该功能是整个油价数据仓库的核心之一,主要功能是按照事先定义的数据表对应关系从相关系统表中抽取数据(Extraction),经过数据清洗和转换(Transform),最终把正确的数据装载到数据仓库的源数据中(Load),作为以后应用的基础。

B.数据转换。该功能是在数据抽取过程中按照定义的规则转换数据,避免了数据在分析时的多样性,保证数据一致性。

C.数据集成。该功能主要是把油价信息数据仓库系统的源数据,按照事先定义的计算逻辑以主题的方式重新整合数据,并以新的数据结构形式存储。

3)数据存储。

星型模型(星型架构)是数据仓库开发中多维展现重要的逻辑结构,构成星型模型的几个重要特征是:维、度和属性,在实际应用中表示为事实表和维度表。在油价数据中,各市场的期现货价格表为数据仓库的事实表,油品类型、合约规定日期等为维度表。

油价数据仓库星型模型的设计方案如下:

A.事实表。数据库表中EIA的期现货价格表(包括日、周、月、年表)作为数据仓库中的事实表,根据不同时间维度构成多个星型模型,即星座模型。这些价格表中以市场编号、油气产品类型、期货合约日期、价格单位度量衡编号作为主键和外键与其他维度表相连,形成多维展示联动的基础,以油价数据和其他事实数据为记录数据,作为主要输出结果。

B.维度表。根据市场、油品、价格数据、度量衡和类型作为油气数据仓库中多维分析的角度和目标。

图5.14以EIA的日期货数据表作事实表为例,构建星型模型,其他不同时间维度的模型结构图与此图基本相同。

图5.14 以EIA数据为例的日期货价格星型模型

以星型模型设计为基础,完善数据存储中操作型数据存储(ODS)的原型设计,提供DB-DW之间中间层的数据环境,可实现操作型数据整合和各个系统之间的数据交换。

油气发现趋势预测

4.4.1.1 基于GED分布的GARCH-VaR模型

在对油价收益率序列建模时,往往发现收益率的波动具有集聚性。为了刻画时间序列的波动集聚性,Engle(1982)提出了ARCH 模型。而在ARCH 模型的阶数很高时,Bollerslev(1986)提出用广义的ARCH 模型即GARCH 模型来描述波动集聚性。

GARCH模型的形式为

国外油气与矿产利用风险评价与决策支持技术

式中:Yt为油价收益率;Xt为由解释变量构成的列向量;β为系数列向量。

国外油气与矿产利用风险评价与决策支持技术

事实上,GARCH(p,q)模型等价于ARCH(p)模型趋于无穷大时的情况,但待估参数却大为减少,因此使用起来更加方便而有效。

同时,由于油价收益率序列的波动通常存在杠杆效应,即收益率上涨和下跌导致的序列波动程度不对称,为此本节引入TGARCH模型来描述这种现象。TGARCH模型最先由Zakoian(1994)提出,其条件方差为

国外油气与矿产利用风险评价与决策支持技术

式中:dt-1为名义变量:εt-1﹤0,dt-1=1;否则,dt-1=0,其他参数的约束与GARCH模型相同。

由于引入了dt-1,因此油价收益率上涨信息(εt-1﹥0)和下跌信息(εt-1﹤0)对条件方差的作用效果出现了差异。上涨时, 其影响程度可用系数 表示;而下跌时的影响程度为 。简言之,若Ψ≠0,则表示信息作用是非对称的。

在关注石油市场的波动集聚性及杠杆效应的基础之上,进一步计算和监控石油市场的极端风险同样是非常重要的。而监控极端市场风险及其溢出效应的关键在于如何度量风险,为此,本节将引入简便而有效的VaR 方法。VaR(Value-at-Risk)经常称为风险值或在险值,表示在一定的持有期内,一定的置信度下可能的最大损失。VaR 要回答这样的问题:在给定时期内,有x%的可能性,最大的损失是多少?

从统计意义上讲,VaR表示序列分布函数的分位数。本节用国际油价收益率的分布函数的左分位数来度量油价下跌的风险,表示由于油价大幅度下跌而导致的石油生产者销售收入的减少;而用分布函数的右分位数来度量油价上涨的风险,表示油价大幅度上涨而导致的石油购者的额外支出。这种思路,一方面推进了一般金融市场仅仅分析价格下跌风险的做法;另一方面,也针对石油市场的特殊情况,更加全面地度量了市场风险,从而为从整体上认识石油市场,判断市场收益率的未来走向奠定了基础。

VaR风险值的计算方法很多,能够适用于不同的市场条件、数据水平和精度要求。概括而言,可以归结为3种:方差-协方差方法、历史模拟方法和方法。本节用方差-协方差方法计算国际石油市场的VaR 风险。在用方差-协方差方法的过程中,估计VaR模型的参数是至关重要的。常用的参数估计方法包括GARCH 模型和J.P.摩根的Risk Metrics方法。由于后者设价格序列服从独立异方差的正态分布,而且不能细致描述价格波动的某些特征(如杠杆效应),因此相对而言,前者更受青睐。但是,使用GARCH模型估计VaR时,选择残差项的分布是一个非常重要的问题。考虑到油价收益率序列具有尖峰厚尾和非正态分布的特征,因此直接用正态分布的设往往会低估风险。为此,本节引入Nelson(1990)提出的广义误差分布(GED)来估计GARCH模型的残差项。其概率密度函数为

国外油气与矿产利用风险评价与决策支持技术

式中: Г(·)为gamma函数;k为GED分布参数,也称作自由度,它控制着分布尾部的薄厚程度,k=2表示GED分布退化为标准正态分布;k﹥2表示尾部比正态分布更薄;而k﹤2表示尾部比正态分布更厚。可见GED分布是一种复杂而综合的分布。实际上,也正是由于GED分布在描述油价收益率分布的厚尾方面具有独特的优势,因此本节引入基于GED分布的GARCH模型来估计国际石油市场收益率上涨和下跌时的VaR。

计算出石油市场的VaR风险值之后,为了给有关方面提供准确可靠的决策支持,有必要对计算结果进行检验,以判断所建立的VaR模型是否充分估计了市场的实际风险。为此,本节将用Kupiec提出的检验方法来检验VaR模型的充分性和可靠性。该方法的核心思想是:设计算VaR的置信度为1-α,样本容量为T,而失效天数为Ⅳ,则失效频率f=Ⅳ/T。这样对VaR 模型准确性的评估就转化为检验失效频率f是否显著不同于α。基于这种思想,Kupiec提出了对原设f=а的最合适的似然比率检验:在原设下,统计量LR服从自由度为1的X2分布,95%和99%置信度下的临界值分别为3.84和6.64。根据x2分布的定义,如果估计值LR大于临界值,就拒绝原设,即认为估计的VaR模型是不充分的。

国外油气与矿产利用风险评价与决策支持技术

4.4.1.2 基于核权函数的风险溢出效应检验方法

本节将用Hong(2003)提出的风险-Granger因果关系检验方法检验WTI和Brent原油市场的风险溢出效应。该方法的核心思想是通过VaR 建模来刻画随着时间变化的极端风险,然后运用Granger因果检验的思想来检验一个市场的大风险历史信息是否有助于预测另一个市场的大风险的发生。

首先,定义基于VaR的风险指标函数。以下跌风险为例:

Zm,t=I(Ym,t﹤-VaRm,t)(m=1,2) (4.11)

式中:I(·)为指标函数。当实际损失超过VaR时,风险指标函数取值为1,否则为0。

如果检验市场2是否对市场1产生了单向的风险溢出,则原设为H0:E(Z1,t∣I1,t-1)=E(Z1,t∣It-1),而备择设为HA:E(Z1,t∣I1,t-1)≠E(Z1,t∣It-1),其中It-1={Ym,t-1,Ym,t-2,…),表示t-1时刻可以获得的信息集。通过这种转换,{ Y1,t}和{Y2,t}之间的风险-Granger因果关系就可以看成是{Z1,t}和{Z2,t}之间的均值-Granger因果关系,即计量经济学模型中广泛使用的Granger因果关系。

如果Ho成立,即市场2 对市场1不存在单向的风险-Granger因果关系,则表示Cov(Z1,t,Z2,t-j)=0, j﹥0。如果对某一阶j﹥0,有Cov(Z1,t,Z2,t-j)≠0,则表明存在风险-G ranger因果关系。换言之,当一个市场发生大的风险时,我们能用这个信息去预测另一个市场未来可能发生同样风险的可能性。

现在设VaRm,t=VaRm(Im,t-1,α),m=1,2是市场m在风险水平(即显著性水平)α下得到的VaR序列,本节引入基于GED分布的GARCH 模型,并利用方差-协方差方法得到该序列。设有T个随机样本 并令Zm,t=I(Ym,t﹤-VaRm,t),m=1,2,则定义Z1,t和Z2,t之间的样本互协方差函数(CCF)为

国外油气与矿产利用风险评价与决策支持技术

式中: 。而Z1,t和Z2,t的样本互相关函数为

国外油气与矿产利用风险评价与决策支持技术

式中: 是Zm,t的样本方差;j=0,±1,…,±(T-1)。

然后,Hong(2003)提出了基于核权函数的单向风险-Granger因果关系检验统计量:

国外油气与矿产利用风险评价与决策支持技术

式中:中心因子和尺度因子分别为

国外油气与矿产利用风险评价与决策支持技术

式中k(·)为核权函数,而且H ong(2003)证明了Daniell核权函数k(z)=sin(π)z/π ,z∈(-∞,+∞)是最优的核权函数,能够最大化检验效力。该核权函数的定义域是无界的,此时可把M 看作是有效滞后截尾阶数;而且当M 较大时,Q1(M)能够更加有效地检测出风险溢出效应的时滞现象。

Hong(2003)同时给出了检验双向风险-Granger因果关系的统计量,其原设为两个市场之间任何一个市场均不G ranger-引起另一个市场的极端风险,并且两个市场之间不存在任何即时风险溢出效应。这表示对于任意阶j=0,±1,±2,…,均有Cov(Z1,t,Z2,t-j)=0。为了检验该原设,Hong(2003)提出了如下的统计量:

国外油气与矿产利用风险评价与决策支持技术

式中:中心因子和尺度因子分别为

国外油气与矿产利用风险评价与决策支持技术

原设成立时,Q1(M)和Q2(M)在大样本条件下均服从渐近的标准正态分布。而且,Hong(2003)指出,运用这两个统计量时,应该使用标准正态分布的右侧临界值。

预测方法体系

“我国油气潜力分析及储量、产量增长趋势预测”项目由新一轮全国油气评价项目办公室组织,油气中心、中国石油大学(北京)、中国石油、中国石化、中海石油和青岛海洋地质研究所等单位共同参加,形成产、学、研相结合的工作方式,充分利用新一轮全国油气评价已进行评价工作的基础和成果,开展油气发现趋势预测研究。项目共分5个子项目,中石油负责收集、整理矿权区内盆地的量和勘探开发基础资料,预测盆地油气2006~2030年的增长趋势;中石化负责收集、整理矿权区内盆地的量和勘探开发基础资料,预测盆地油气2006~2030年的增长趋势;中海油负责收集、整理矿权区内盆地的量和勘探开发基础资料,预测盆地油气2006~2030年的增长趋势;青岛海洋地质研究所负责国内外油气发现趋势预测的理论、研究方法调研和国内外发现趋势预测的对析,预测其他海域盆地油气2006~2030年的增长趋势。中国石油大学(北京)负责制定统一的评价方法体系与参数标准,以及典型评价单元的剖析,并负责趋势预测软件的研制和数据库的建立,预测陆上其他盆地油气2006~2030年的增长趋势。

油气发现趋势预测软件模块包括油气发现趋势预测数据库和基于数据库的相关预测方法软件,数据库内容包括我国各个含油气盆地油气储量、产量及相应勘探工作量的基础数据,并具有较好的开放性和可扩充性,方法包括专家评估法、统计法和类比法等。

本轮油气评价油气发现趋势预测项目工作中,用数据管理功能实现对油气储量和产量相关数据的动态管理,主要用了专家评估法、统计法、类比法和综合预测法等动态预测我国未来较长时间内油气的发现趋势。专家评估法根据预测地区的成藏条件、勘探工作量以及技术经济风险分析,请有关专家填写设计好的表格,对预测区进行储产量的预测。该方法依赖于专家对预测区的熟悉程度及对未来勘探形势的整体把握。统计法通过对过去油气储量、产量的变化趋势按照一定的统计模型进行拟合,获取有关模型参数,进而进行未来趋势的预测。包含时间序列法和勘探效益分析法两大类方法。其中时间序列法包括翁旋回法、逻辑斯谛法、哈伯特法、龚帕兹法、H CZ法、高斯法、指数模型法及多项式模型法。此方法根据盆地以往所发现储量和产量的实际数据,通过拟合确定储量、产量和时间序列的关系,然后预测未来的储产量发展趋势。勘探效益分析法通过逻辑斯谛和龚帕兹模型去做工作量—储量的拟合与预测。主要使用预测区勘探开始至计算时间每年的探井数、探井进尺数和所发现油田的储量、类型及个数。需要的参数由系统的数据接口提供。类比法建立类比区类比标准表和参数取值表,以及类比区的预测图形库;选取与预测区相适应的评价单元作为类比区,使用探明速度类比法和图形类比法对预测区进行油气发现趋势预测。用特尔菲法对各方法的预测结果进行加权汇总,得到综合预测结果。

油气趋势预测软件在各项目承担单位开展各盆地的趋势预测过程中发挥了积极的作用。其中中石化、中国石油大学(北京)和青岛海洋所完全依靠该软件进行预测,而中石油预测的主体部分也是通过该软件完成的,中海油对软件进行了试用。总体来说趋势预测软件的开发和应用对研究项目的顺利进行起到了应有的作用。

子项目预测结果

油气储量、产量增长趋势预测的方法大致可以划分为四大类:一是专家评估法;二是统计法,包含时间序列数学模型法和工作量数学模型法;三是类比法;第四类是综合预测法。

一、专家评估法

(一)基本原理

专家评估法是指预测者制作油气趋势预测表格,分发给熟悉业务知识、具有丰富经验和综合分析能力的专家学者,让他们在已有资料的基础上,运用个人的经验和分析判断能力,对油气的未来发展作出性质和程度上的判断,然后经过分析处理,综合专家们的意见,得到预测结果。

(二)实施步骤

1.设计油气趋势预测表格

预测表格主要包含油气储量、产量高峰值及持续时间的预测,以及每五年的平均储量发现和产量情况(表4-1-1)。

2.将表格分发给专家进行预测

选择对我国油气状况比较了解,有较高理论水平和丰富实践经验,在油气评价和战略研究方面卓有成效的专家学者。将表发给专家,并附以相关资料,请专家对表中所列事项作出预测与评价,并给出预测依据。

3.预测结果的分析整理

用统计方法综合专家们的意见。把各位专家的预测结果予以综合、整理、分析,并将结果以图表的形式表现出来。

表4-1-1 发现趋势专家评估法预测表

二、统计法

统计法主要依据已知的油气储量、产量数据,用各类数学模型,进行历史数据的拟合,并预测未来的发展趋势。统计法包括时间序列法、勘探工作量数学模型法、递减曲线分析法、储量—产量历史拟合法和储量—产量双向平衡控制模型法等(表4-1-2)。

三、类比法

(一)方法原理

所谓类比法是指开展低勘探程度盆地的油气储量、产量趋势预测时,以勘探程度较高的盆地作为类比对象,依据预测盆地与类比盆地在盆地类型和油气地质条件的相似性,设预测盆地投入充足勘探开发工作量的情况下,未来一个时间段内能够发现的油气储量和达到的产量。类比法可分为探明速度类比法和图形类比法。

表4-1-2 油气发现趋势预测统计法模型分类表

(二)方法种类

1.速度类比法

以盆地类型为主要划分依据,分别选取松辽、鄂尔多斯、渤海湾、二连、准噶尔、柴达木、吐哈、酒泉、塔里木、苏北和百色盆地作为石油储量发现和产量增长的类比盆地,选取四川、鄂尔多斯、塔里木、吐哈、柴达木、松辽、渤海湾、南襄和百色盆地作为天然气储量发现和产量增长的类比盆地。依据各盆地油气的探明程度与出程度,将以上盆地的勘探开发阶段划分为早期、中期和后期,不同阶段具有不同的油气地质储量的探明速度和可储量的出速度。对低勘探程度盆地进行油气趋势预测时,给定油气储量发现和开始具有产量的起点,类比高勘探程度盆地的探明速度和出速度,预测出未来某一时间单元内(2006~2030年)该盆地油气储量探明状况和产量增长状况。

2.图形类比法

图形类比法是设在有充足的勘探开发工作量基础上,预测盆地和类比盆地具有相似的勘探发现历程与产量增长过程,预测盆地可类比高勘探程度盆地的储量发现和产量增长曲线,使用类比盆地的模型参数以及预测盆地的量数据,即可得到预测盆地油气趋势预测曲线,进而得到2006~2030年储量和产量的数据。

按照类比标准表所选取的盆地,使用龚帕兹模型分别进行储量和产量数据曲线的拟合,得到40个储量类比图形和产量类比图形,以及相应的图形参数a、b。

(三)实施步骤

(1)建立类比标准表:选取勘探程度较高的盆地作为类比盆地,按照盆地类型进行分类,将各盆地的储量发现和产量增长划分为不同的阶段,统计计算各阶段的储量探明速度和产量增长速度,制作类比标准表。

(2)建立类比图形库:根据作为类比盆地的高勘探程度盆地的储量、产量历史数据,用龚帕兹模型进行曲线拟合,得到控制图形形状的参数a和b,分别拟合类比标准表中各盆地的储量和产量曲线,建立类比图形库。

(3)为预测盆地选择合适的类比盆地:预测盆地与类比盆地的盆地类型、地层时代、储层岩性相近,油气地质条件可以类比。

(4)按照类比标准表分别给各预测盆地储量探明速度和产量增长速度赋值,并按盆地实际情况选择对应的持续时间,得到2006~2030年预测盆地累计探明程度、储量以及累计产量。

(5)将预测盆地的量和类比盆地的参数a和b代入龚帕兹公式,得到预测盆地的储量发现和产量增长曲线。

(6)以探明速度和产出速度类比法为主,并考虑图形类比法得到的预测结果,对预测盆地2006~2030年油气发现趋势进行综合分析。

四、综合预测法

(一)方法原理

综合预测法是指以盆地或预测区的潜力为预测基础,分析其勘探开发历程,依据目前所处的勘探开发阶段,确定其未来储量、产量可能出现的高峰值及时间,使用多旋回哈伯特模型,用储比控制的办法,对油气储量、产量进行预测。

1.哈伯特模型

哈伯特模型将油田产量的历史数据与对称的钟形曲线相拟合。哈伯特模型有3个基本的定:

(1)油田投入开发后,产量从0开始随开发时间的延长而上升,并达到一个或多个高峰值。

(2)产量高峰过后,则随开发时间的延长而下降,直至完全衰竭。

(3)当开发时间趋近于无穷时,产量与时间关系曲线下面的面积,等于油田的最终可储量。

在上述条件下,油气田的产量可用累积产量的二次函数表示,其表达式为:

全国油气储量产量增长趋势预测

式中:Q为油气田产量,104t/年(油田)或108m3/年(气田);Np为累积产量,

104t或108m3;a、b为模型参数。S.M.Al-Fattah和陈元千推导出哈伯特模型的累积产量与开发时间的关系式为:

全国油气储量产量增长趋势预测

式中:NR为最终可储量,104t或108m3;t为投产后年份,a;t0为开始投产年份,a;c为模型参数。

式(4-2)表示的是累积产量与时间的关系,实际上是逻辑斯谛模型的一种衍生形式。式(4-2)也可表示为:

全国油气储量产量增长趋势预测

式中:tm为产量高峰年份,a。

式(4-3)两边分别对t求导,得到产量与时间的关系式为:

全国油气储量产量增长趋势预测

式中:Qm为油田年产量高峰值,104t或108m3。

由式(4-4)知,当t=tm时, ,即当油气田年产量达到最高年产量(峰值)时,相应的累积产量应等于最终可储量的50%。

就式(4-4)而言,参数b控制了曲线张口的大小,b值大时,曲线陡峭,张口小,表示预测地区的储量发现或产量增长属于快上快下型,持续时间短,达到高峰后迅速下降;b值小时,曲线平缓,张口大,表明储量或产量平缓增长,高峰时间长,有一个较长的生命周期。

2.多旋回哈伯特模型

多旋回哈伯特模型可表示为:

全国油气储量产量增长趋势预测

式中:i为哈伯特旋回个数;k为哈伯特旋回总数,其他参数同上。

用多旋回哈伯特模型预测石油地质储量和油气产量首先要确定哈伯特旋回的个数,除了已出现的高峰,还要预测将来可能出现的高峰个数,这需要掌握丰富的地质资料和勘探开发历程,并对油气田的未来发展趋势有比较正确的认识;然后通过最小二乘法进行非线性拟合,确定单个哈伯特模型的参数,最后将多条哈伯特曲线叠加得到总的预测曲线。

(二)实施步骤

1.油气储量、产量高峰的基本判断

开展盆地油气储量、产量发展趋势预测是以其油气潜力分析为基础的,盆地的量和探明程度、产出程度基本上决定了油气未来储量、产量上升或下降的态势。因此,依据盆地目前所处的勘探阶段、潜力、历年所发现的储量规模、石油公司的“十一五”规划和中长期发展规划以及专家评估法作出的判断,确定盆地的储量发现高峰是否已过,如果高峰已过,则未来的储量发现将呈现衰减的形势;如果尚未达到高峰,则需要判断高峰出现的时间及高峰值,不同类型盆地的储量高峰所处的勘探阶段不同,但一般出现在探明程度40%~60%时。产量高峰的判断还要考虑油气开发状况,一般比储量高峰晚5~20年。通过专家小组会议确定各盆地的储量、产量高峰。

2.油气储量、产量增长曲线拟合

在确定了盆地储量、产量的高峰后,即可使用多旋回哈伯特或高斯模型进行油气储量、产量曲线的拟合。首先要确定哈伯特旋回的个数,除了已出现的高峰,还要根据未来可能出现的高峰值,选择合适的旋回个数,然后通过最小二乘法进行非线性拟合,精确确定单个哈伯特模型有关高峰值、出现时间及表示曲线形态的参数,最后将多条哈伯特曲线叠加得到总的预测曲线。

3.用储比控制储量、产量之间的关系

首先对预测期内的储比变化趋势进行预测判断,一般而言,高勘探程度盆地的储比呈现下降趋势,而低勘探程度盆地的储比在储量发现高峰之前快速上升。然后对盆地的储量、产量进行预测,用储比控制法控制储量、产量之间的关系。储比控制法是在对预测期内新增动用可储量的预测基础上,用剩余可储量的储比作为控制条件进行产量预测的一种方法。预测期历年的新增可储量,包括老油田提高收率增加的部分和新增动用储量增加的部分。

(三)方法特点

1.预测依据充分

用综合预测法进行盆地油气趋势预测,不是靠以往数据的趋势外推,而是以盆地的油气量为基础,通过潜力分析,定性判断其未来的勘探开发前景。该方法也综合考虑了盆地地质特点、地质理论和勘探开发技术进步、勘探圈闭类型等影响储量、产量增长的内在因素和供需形势、油价、政策以及突发等外在因素,同时参考了石油公司的“十一五”规划和中长期发展规划以及专家评估法作出的趋势判断。因此,预测依据是十分充分的。

2.发挥了专家经验判断的作用

单纯用统计法进行趋势预测,一个很大的弱点就是预测完全受数学模型的约束,很多专家经验的判断无法在预测中体现。而综合预测法既有数学模型的约束,也有专家经验的体现,实现了主客观相结合的预测思路。

3.方法可控性强

使用多旋回模型预测,能够对预测进行有效控制。由于盆地油气储量、产量增长曲线多为多峰的形态,单旋回的预测无法预测出未来高峰的出现,而多旋回模型可以把由于不同原因出现的储量、产量高峰一一表现出来,从而对储量、产量增长结构有更清楚的认识,明了什么时间由于何种的影响使油气储量、产量有了明显的上升或下降。利用软件可方便地实现对多旋回的控制。

五、预测方法创新之处

(一)全面使用了专家评估法

国内外调研分析表明,专家经验是油气发现趋势不可或缺的力量,专家评估法是除统计法和类比法之外的另一大类预测方法。因此,项目办公室专门制作了油气趋势预测的表格,分发给30余位石油界的专家,让专家们在规定的时间内,对我国主要含油气盆地石油天然气发现趋势进行预测,并给出综合分析。

专家们的预测代表了我国石油界对未来油气储量、产量增长的基本判断和普遍看法,这项工作是国内首次开展的一项调查研究工作,既为油气趋势预测研究提供了指导性的意见和参考依据,也是对我国石油工业未来发展思路上的整体把握。

(二)广泛应用了类比法

对于勘探程度相对较低的盆地使用类比法开展油气趋势预测研究。根据评价区与类比区油气地质条件的相似性,按照类比区不同勘探阶段和油气产出阶段具有不同的探明速度和产出速度,判断在未来某一时间段内评价区所处的勘探阶段,用探明速度和产出速度乘以其地质量和可量,即可得到评价区的储量、产量增长趋势。

类比法的建立为低勘探程度地区的油气储量、产量增长趋势预测提供了可行的思路和办法,解决了以往趋势预测只能在高勘探程度地区开展的问题,是预测方法的一大创新之处。

(三)首创并应用了综合预测法

从国内外有关油气趋势预测的现状来看,基本上都属于统计法的范畴,利用各类数学模型,以以往的储量和产量数据进行趋势外推。这种预测受数学模型的约束太大,很多经验的判断也无法在模型中体现出来,对于勘探过程中因勘探新领域突破而带来的储量增长突变无法有效预测。因此,需要一种考虑主客观条件、具有普遍适用性的预测方法。因此,本次研究创立并应用了综合预测法进行油气储量、产量增长趋势预测。该方法预测依据充分,能够发挥专家的经验判断,具有很强的可操作性,在实际应用中取得了很好的效果。

一、子项目概况

“我国油气潜力分析及储量、产量增长趋势预测”项目由新一轮全国油气评价项目办公室组织,国土部油气战略研究中心、中国石油大学(北京)、中国石油天然气集团公司(简称“中石油”)、中国石油化工集团公司(简称“中石化”)、中国海洋石油总公司(简称“中海油”)和青岛海洋地质研究所等单位共同参加,形成产、学、研相结合的工作方式,充分利用新一轮全国油气评价已进行评价工作的基础和成果,开展油气发现趋势预测研究。

项目共分5个子项目:

(1)中石油负责矿权区内Ⅰ类和Ⅱ类盆地2006~2030年油气储量、产量的增长趋势。

(2)中石化负责矿权区内Ⅰ类和Ⅱ类盆地2006~2030年油气储量、产量的增长趋势。

(3)中海油负责矿权区内Ⅰ类和Ⅱ类盆地2006~2030年油气储量、产量的增长趋势。

(4)青岛海洋地质研究所负责预测海域其他盆地2006~2030年油气储量、产量的增长趋势。

(5)中国石油大学(北京)负责制定统一的评价方法体系与参数标准,以及趋势预测软件的研制和数据库的建立,预测陆上其他盆地2006~2030年油气储量、产量的增长趋势。

二、中石油趋势预测结果

(一)工作范围

对已有油气田开发的8个Ⅰ类盆地和已发现油气田的6个Ⅱ类盆地进行重点研究和详细解剖,预测盆地或一级构造单元储量和产量在2006~2030年的增长趋势;对4个有少量油气产量或探明储量的Ⅲ类盆地和81个有油气远景的Ⅳ类盆地通过类析其储量和产量增长趋势。

(二)预测方法

在对18种预测方法的内涵、特点及使用条件分析研究基础上,选择翁氏旋回模型、HCZ模型、哈伯特模型与龚帕兹模型等四种方法对中石油未来石油、天然气储量的增长趋势进行预测。翁氏模型法和HCZ模型法两种方法的预测结果比较接近,而且增长高峰期过后,储量下降速度与勘探实际比较吻合;哈伯特模型法和龚帕兹模型的预测结果偏乐观,储量增长高峰期也偏晚,且高峰过后储量下降速度偏快,与实际的储量增长过程吻合性较差。因此,对未来25年油气储量增长趋势的预测,主要依据HCZ和翁氏模型方法确定。

对中石油未来石油、天然气产量趋势的预测方法主要选择了模型预测和储比控制两大类方法进行,其中模型预测法的选择借鉴了储量预测方法选择的思路,主要选用了HCZ模式、翁氏模型、哈伯特模型与龚帕兹模型等四种方法。储比控制预测法是在对预测期内新增动用可储量的预测基础上,用剩余可储量的储比作为控制条件进行产量预测的一种方法。

另外,中石油还使用了专家评估法进行了部分盆地的预测。

(三)预测结果

依据多种预测方法获得的数据,结合对石油勘探储量增长趋势的分析,对预测结果作适度调整,综合给出未来25年中石油的石油、天然气储量、产量增长趋势,列于表3-1-1、表3-1-2;图3-1-1、图3-1-2。

各个盆地的具体预测结果如表3-1-3~表3-1-6。

表3-1-1 中石油探明石油地质储量增长趋势预测结果表

表3-1-2 中石油天然气地质储量增长趋势预测结果对比表 单位:108m3

注:5年新增可储量/年均新增可储量。

图3-1-1 储比控制法中国石油常规原油产量构成图

图3-1-2 中国石油气层气产量构成图

表3-1-3 盆地每五年年均石油储量预测结果表 单位:108t

表3-1-4 盆地每五年年均石油产量预测结果表 单位:104t

表3-1-5 盆地每五年年均天然气储量预测结果表 单位:108m3

表3-1-6 盆地每五年年均天然气产量预测结果表 单位:108m3

三、中石化趋势预测结果

(一)工作范围

1.已有油气田并规模开发的4个Ⅰ类盆地

承担济阳坳陷、东濮凹陷、塔里木盆地和东海西湖凹陷4个重点盆地、凹陷的预测工作。

2.已有油气田的3个Ⅱ类盆地

承担江汉盆地、南襄盆地、苏北盆地等3个盆地的预测工作。

(二)预测方法

对石油探明储量的预测主要选用逻辑斯谛、龚帕兹、哈伯特和多旋回哈伯特模型三种模型;除了时间序列法之外,通过系统收集、整理预测区历年石油探井井数、探井进尺、单井发现率和单位进尺发现率数据,使用单井发现率法和单位进尺发现率法进行油气储量的预测。取时间序列法和勘探效益法两种方法预测结果的平均值作为最后推荐值。

使用“储量—产量”双控模型预测石油产量,即根据预测区石油新增地质储量规模、新增地质储量动用率、新增地质储量收率、未来提高收率潜力和储比的可能取值,由“储量—产量”双控模型,计算出今后各时期石油产量的预测值。

(三)预测结果

依据多种预测方法获得的数据,结合对石油勘探储量增长趋势的分析,对预测结果作适度调整,综合给出未来25年中石化各个盆地的石油、天然气储量、产量预测趋势,列于表3-1-7~表3-1-10。

表3-1-7 中石化各盆地每五年年均石油储量预测结果表 单位:108t

表3-1-8 中石化各盆地每个五年末石油产量预测结果表 单位:104t

表3-1-9 中石化各盆地、坳陷每五年年均天然气储量预测结果表 单位:108m3

表3-1-10 中石化各盆地每个五年末天然气产量预测结果表 单位:108m3

四、中海油趋势预测结果

(一)工作范围

1.已有油气田并规模开发的4个Ⅰ类盆地

承担渤海湾盆地(海域)、珠江口、莺歌海、琼东南4个重点盆地的预测工作。

2.已有油气田的1个Ⅱ类盆地

承担北部湾盆地1个盆地的预测工作。

3.有油气远景的2个Ⅳ类盆地

承担南黄海盆地、台西—台西南盆地预测工作。

(二)预测方法

本次油气发现趋势预测在中高勘探程度的盆地以统计法为主,在中低勘探程度的盆地以类比法为主。

石油储量预测的统计法主要选用龚帕兹、HCZ、广义翁式旋回三种模型。产量预测除了以上三种模型,还使用“储量—产量”双控模型。

对天然气的预测主要依据2005年编制的中国近海2050年天然气远景规划,其中根据近期深水勘探进展对珠江口盆地进行了调整。

(三)预测结果

依据多种预测方法获得的数据,结合对石油勘探储量增长趋势的分析,对预测结果作适度调整,综合给出未来25年中海油的石油、天然气储量、产量预测趋势,列于表3-1-11~表3-1-15。

表3-1-11 中海油各盆地每五年年均石油储量预测结果表 单位:108t

表3-1-12 中海油各盆地每五年年均石油产量预测结果表 单位:108t

表3-1-13 中海油每五年年均天然气储量预测结果表 单位:108m3

表3-1-14 中海油每五年年均天然气产量预测结果表 单位:108m3

五、青岛所趋势预测结果

(一)工作范围

开展我国其他海域盆地(指目前石油公司探区以外海域或盆地,包括北黄海盆地、冲绳海槽盆地、曾母盆地、万安盆地、文莱—沙巴盆地、西北巴拉望盆地、北康盆地、中建南盆地、南薇西盆地、礼乐盆地、笔架南盆地、南沙海槽盆地、南薇东盆地、永暑盆地、安渡北盆地及九章盆地共16个盆地)油气发现趋势预测,建立不同类型盆地油气发现趋势预测模型。

(二)预测方法

我国其他海域盆地中高勘探程度盆地以已发现的油气可或探明储量与实际勘探历程及勘探工作量所建立的预测模型,结合新一轮资评计算的盆地油气可或地质,以时间序列、地震工作量序列和钻井工作量序列(每个序列包括逻辑斯谛和龚帕兹两个预测模型,对处于勘探后期的盆地还可增加指数模型)预测今后未来一段时期(2006~2030年)内在一定勘探工作量支持下,盆地内油气储量(可或地质)发现或产量增长趋势。

中低勘探程度盆地使用类比法进行油气储量、产量预测。

(三)预测结果

依据多种预测方法获得的数据,结合对石油勘探储量增长趋势的分析,对预测结果作适度调整,综合给出未来25年其他海域盆地的石油、天然气储量、产量预测趋势,列于表3-1-15。

表3-1-15 南海南部主要盆地每五年年均油气地质储量发现趋势预测表(108t油当量)

注:油气产量和海域其他低勘探盆地油气储量、产量预测结果未附。

六、中国石油大学(北京)趋势预测结果

(一)工作范围

包括81个陆上的Ⅲ类和Ⅳ类盆地。

其中彰武、河套、羌塘、银根、赤峰、民和、伊犁、三江、大杨树、巴彦浩特、鄱阳、百色、保山、景谷、陆良、三水等16个盆地进行了油气储量和产量的预测;

南华北、花海、洛阳—伊川、六盘山、柴窝堡、措勤、伦坡拉、句容—常州、延吉、阜新、楚雄、洞庭、金衢、望江、漠河、清江、胶莱、茂名和库木库里等19个盆地只进行油气储量的预测。

(二)预测方法

建立了以类比法为主,统计法和综合分析法为辅的预测方法和参数体系。对百色、保山、景谷、陆良4个Ⅲ类盆地用统计法进行2006~2030年油气储量、产量增长趋势的预测。使用类比法和综合分析法对我国陆上81个低勘探程度盆地中的一级盆地进行了油气储量和产量预测,对二级盆地进行了油气储量预测。

(三)预测结果

依据多种预测方法获得的数据,结合对石油勘探储量增长趋势的分析,对预测结果作适度调整,综合给出未来25年其他陆上盆地的石油、天然气储量、产量预测趋势,列于表3-1-16、表3-1-17。

表3-1-16 陆上低勘探程度盆地石油发现趋势预测结果表

表3-1-17 陆上低勘探程度盆地天然气发现趋势预测结果表

(四)子项目预测结果汇总

本次预测未包括南海南部盆地,4个子项目的油气储量、产量预测结果汇总如表3-1-18、表3-1-19。

表3-1-18 四个子项目石油储量、产量预测结果统计表(不包括南海南部盆地)

表3-1-19 四个子项目天然气储量、产量预测结果统计表(不包括南海南部盆地)